Aesthetic-Driven Image Enhancement by Adversarial Learning

نویسندگان

  • Yubin Deng
  • Chen Change Loy
  • Xiaoou Tang
چکیده

We introduce EnhanceGAN, an adversarial learning based model that performs automatic image enhancement. Traditional image enhancement frameworks involve training separate models for automatic cropping or color enhancement in a fully-supervised manner, which requires expensive annotations in the form of image pairs. In contrast to these approaches, our proposed EnhanceGAN only requires weak supervision (binary labels on image aesthetic quality) and is able to learn enhancement parameters for tasks including image cropping and color enhancement. The full differentiability of our image enhancement modules enables training the proposed EnhanceGAN in an end-toend manner. A novel stage-wise learning scheme is further proposed to stabilize the training of each enhancement task and facilitate the extensibility for other image enhancement techniques. Our weakly-supervised EnhanceGAN reports competitive quantitative results against supervised models in automatic image cropping using standard benchmarking datasets, and a user study confirms that the images enhancement results are on par with or even preferred over professional enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Enhancement of Learning Based Image Matting Method with Different Background/Foreground Weights

The problem of accurate foreground estimation in images is called Image Matting. In image matting methods, a map is used as learning data, which is produced by those pixels that are definitely foreground, definitely background ,and unknown. This three-level pixel map is often referred to as a trimap, which is produced manually in alpha matte datasets. The true class of unknown pixels will be es...

متن کامل

Conditional Generative Adversarial Networks for Speech Enhancement and Noise-Robust Speaker Verification

Improving speech system performance in noisy environments remains a challenging task, and speech enhancement (SE) is one of the effective techniques to solve the problem. Motivated by the promising results of generative adversarial networks (GANs) in a variety of image processing tasks, we explore the potential of conditional GANs (cGANs) for SE, and in particular, we make use of the image proc...

متن کامل

Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning

Recent advancements in deep learning opened new opportunities for learning a high-quality 3D model from a single 2D image given sufficient training on large-scale data sets. However, the significant imbalance between available amount of images and 3D models, and the limited availability of labeled 2D image data (i.e. manually annotated pairs between images and their corresponding 3D models), se...

متن کامل

Automatic Image Cropping for Visual Aesthetic Enhancement Using Deep Neural Networks and Cascaded Regression

Despite recent progress, computational visual aesthetic is still challenging. Image cropping, which refers to the removal of unwanted scene areas, is an important step to improve the aesthetic quality of an image. However, it is challenging to evaluate whether cropping leads to aesthetically pleasing results because the assessment is typically subjective. In this paper, we propose a novel casca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.05251  شماره 

صفحات  -

تاریخ انتشار 2017